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Abstract

The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling contin-
uous patient monitoring, early diagnosis, and personalized treatments. However, the
het-erogeneity of [oMT devices and the lack of standardized protocols introduce serious
security vulnerabilities. To address these challenges, we propose a hybrid BiLSTM-DNN
intrusion detection system, named HBiLD-IDS, that combines Bidirectional Long Short-
Term Memory (BiLSTM) networks with Deep Neural Networks (DNNs), leveraging both
temporal dependencies in network traffic and hierarchical feature extraction. The model
is trained and evaluated on the CICIoMT2024 dataset, which accurately reflects the di-
versity of devices and attack vectors encountered in connected healthcare environments.
The dataset undergoes rigorous preprocessing, including data cleaning, feature selection
through correlation analysis and recursive elimination, and feature normalization. Com-
pared to existing IDS models, our approach significantly enhances detection accuracy and
generalization capacity in the face of complex and evolving attack patterns. Experimental
results show that the proposed IDS model achieves a classification accuracy of 98.81%
across 19 attack types confirming its robustness and scalability. This approach represents
a promising solution for strengthening the security posture of IoMT networks against
emerging cyber threats.

Keywords: IoMT; IDS; preprocessing; deep learning; BILSTM; multi-class classification

1. Introduction

The rapid expansion of the Internet of Things (IoT) industry and advancement in
In-formation and Communication Technology (ICT) has significantly transformed the
healthcare sector [1,2], through the widespread adoption of the Internet of Medical Things
(IoMT), leading to improved remote patient care, enhanced diagnostic capabilities, real-
time monitoring, and cost reductions [3]. However, the heterogeneous nature of IloMT
ecosystems characterized by diverse operating protocols, lack of standardization in security
implementations, and resource-constrained devices has created exploitable attack surfaces,
making medical devices highly vulnerable and prime targets for cyber threats [4].
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The critical nature of healthcare services and the privacy of medical data exacerbate
security challenges in IoMT environments. Therefore, the need to provide protection
against inappropriate access and attacks has become critical. Undetected anomalies in
data traffic can have serious consequences, ranging from the tampering with diagnostic
information [5], which can lead to serious medical problems such as delayed emergency
care or even death [6], to physical damage from hardware failures, which can lead to partial
or complete network downtime [7].

Intrusion detection systems (IDSs) are among the most widely available solutions for
countering cyber threats in various IoT environments [8]. In healthcare environments, IDSs
function as both an early warning mechanism and a primary defense layer by continuously
analyzing network traffic to detect anomalies including hacking attempts, malware infec-
tions, and suspicious patterns and alerting healthcare providers of any potential security
breaches at an early stage [9]. Due to the life-critical nature of healthcare services, the is
growing demand for specialized IDS specifically designed to address the unique challenges
of the JoMT.

In IoMT networks, medical devices and sensors generate data streams that exhibit
both spatial and temporal dependencies [10]. Spatial patterns reflect device communication
behavior [11], while temporal patterns capture the evolution of attack events over time [10].
Conventional IDSs are unable to address the unique characteristics of these environments.
This includes their inability to effectively capture spatial and temporal patterns in network
traffic and their inability to detect the dynamic and evolving nature of attacks in IoMT
networks [12]. In particular, communication patterns between devices can fluctuate based
on patient conditions, device configurations, and environmental factors, making it difficult
for traditional IDSs to distinguish between benign and malicious activity, especially in
real-time monitoring scenarios, where delays or inaccurate detection can have serious
consequences for patient care [13]. This makes traditional IDS approaches unsuitable for
IoMT security.

This study proposes HBiLD-IDS, a novel intrusion detection system (IDS) that ad-
dresses the critical challenge of securing Internet of Medical Things (IoMT) networks by
analyzing complex spatio-temporal attack patterns with its pioneering BILSTM-DNN hy-
brid architecture in diverse resource-constrained IoMT environments, offering distinct
advantages over Conventional Neural Network (CNN) approaches which are limited
to capturing spatial dependencies within data and Long Short-Term Memory (LSTM)
approaches that process time sequences in a unidirectional manner only [14]. This hy-
brid approach was preferred over Transformers-based approaches, due to their higher
computational demands which are unsuited for edge devices and their less effective gen-
eralization on smaller, domain-specific datasets in the IoMT ecosystem, and over Gated
Recurrent Units (GRUs)-based approaches [15], which struggle to identify multi-stage
intrusion patterns due to their limited memory capacity and for BILSTM’s superior ability
to understand long-term dependencies and complete bidirectional context. HBiLD-IDS
offer end-to-end protection with its BILSTM layers that uniquely process attack sequences
bidirectionally (forward and backward) [16], enabling superior detection of complex threats
such as intermittent false data injection. The extracted spatio-temporal features are then
refined by passing them to a DNN processor that analyzes attack signatures hierarchi-
cally [17], achieving exceptional classification accuracy that enables realistic discrimination
between legitimate operations and intrusions. This unique architecture enables the system
to proactively defend against intrusions. The HBiLD-IDS framework was evaluated using
the CICIoMT2024 dataset, incorporating rigorous feature selection, while accounting for
feature importance across different attack types to assess discriminatory power.
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This paper is organized as follows: Section 2 reviews related works and identifies
re-search gaps. Section 3 presents the methodology to develop the proposed model. First,
it outlines the global framework and then introduces the CICIoMT2024 dataset and details
the data preprocessing steps. Finally, it describes the detailed architecture and experimental
setup. Section 4 presents and analyzes the obtained results and discusses limitations and
suggests future enhancements. Section 5 concludes this study by summarizing key findings
and contributions.

2. Related Work

Over the past few years, various machine learning (ML) and deep learning (DL)
techniques have been proposed to enhance attack detection in IoT and healthcare-based
systems using different benchmark datasets.

Shaikh et al. [18] proposed combining CNN, LSTM, and reinforcement learning models
into a hybrid framework applied to the CICIoMT2024 dataset, achieving 77.73% accuracy
for 19-class classification. In contrast, Sharma and Shambharkar [19] significantly improved
performance to 98.56% using CNN, Recurrent Neural Network (RNN), and attention mech-
anisms on the same dataset, demonstrating the advantage of attention-based architectures.
Similarly, Akar et al. [20] combined DNN and LSTM to reach 98% accuracy on the same
multi-class dataset, confirming the effectiveness of hybrid sequential models.

Transformer-based models have gained significant attention due to their superior mod-
eling of sequential and contextual features. Naeem et al. [21] implemented Transformer-
based neural networks alongside DCNNs, LSTM, and meta-learners, achieving 98.84%
accuracy for binary classification across WUSTL-EHMS-2020 and CICIoMT2024 datasets.
Tseng et al. [22] and Alsharaiah et al. [23] also employed Transformer-based models, attain-
ing accuracies of 99.40% and 99.71%, respectively, across CICIoT2023 and CICIoMT2024
datasets, always in binary classification, with the latter incorporating SHAP-based explain-
ability to improve model transparency.

LSTM remains a foundational model for temporal sequence analysis in network traffic
data. Faruqui et al. [24] applied CNN and LSTM across CICIDS2017/2018/2019 datasets,
achieving 97.63% accuracy in a 12-class classification setup. Gueriani et al. [25] used CNN-
LSTM on CICIoT2023 datasets, attaining 98.42% for binary classification. Other standalone
LSTM-based approaches, such as the one proposed by Sayegh et al. [26], reached 99.75%
accuracy on datasets including NSL-KDD and UNSW-NB15 for binary classification, while
Jony et al. [27] reported 98.75% for 35-class classification using LSTM on CICIoT2023.

Ensemble-based methods such as Random Forest, XGBoost, and Decision Trees have
also shown strong performance, particularly in multi-class contexts. Lipsa et al. [28]
evaluated these models across CICIDS2017 and NSL-KDD datasets, achieving up to 99%
and 99.80% accuracy for 14 classes and 05 classes, respectively. Talukder et al. [29] extended
this evaluation to multiple datasets including UNSW-NB15, CICIDS2017, and CI-CIDS2018,
achieving near-perfect accuracy across 10-15 classes using various ensemble models.

Furthermore, federated learning and explainable Al approaches have recently gained
traction. Abbas et al. [30] introduced a federated DNN that achieved 99% binary classifi-
cation accuracy on CICIoT2023, addressing privacy concerns by eliminating centralized
data processing. Alsharaiah et al. [23] employed explainable Al using SHAP values with
a Transformer-based DL model, combining interpretability with high accuracy on the
CI-CIoMT2024 dataset.

Multi-dataset evaluation has emerged as a key approach to test generalization capabil-
ity. Doménech et al. [31] achieved 99.85% accuracy on CICIoT2023 and CICIoMT2024 for a
6-class problem using classical ML models, while Khanday et al. [32] tackled 35-class classi-
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fication with an LSTM and 1D-CNN approach, reporting 99.87% accuracy. These examples
highlight the community’s shift toward solving complex, real-world multi-class problems.

Finally, emerging architectures like GRU with attention mechanisms, as seen in
the work of Saran et al. [33], have reached up to 99.99% accuracy on ICU datasets.
Anwar et al. [34] incorporated federated learning with LSTM across WSN-DS, CICIDS2017,
and UNSW-NB15, reporting 97.80% accuracy. These works indicate a growing interest
in scalable, adaptive, and privacy-preserving solutions for intrusion detection in IoT and
healthcare networks.

In summary (Refer to Table 1), the literature reveals a clear progression toward ad-
vanced, hybrid Deep Learning architectures with attention mechanisms and Transformer
models, supported by privacy-conscious frameworks such as federated learning. While
binary classifiers tend to reach high accuracy levels, multi-class classifiers are increasingly

being prioritized for their practicality in real-world deployment scenarios.

Table 1. Summary of related work in IDS.

Authors Year Experimental Techniques and Models Classification Accuracy
Dataset Types
Shaikh et al. [18] 2025 CICIoMT2024 CNN, LSTM, and RL Multi-class (19) 77.73%
Sharma and CNN, RNN, and . o
Shambharkar [19] 2025 CICIoMT2024 Attention mechanism Multi-class (19) 98.56%
Akar et al. [20] 2025 CICIoMT2024 LSTM Multi-class (19) 98%
WUSTL-EHMS-2020, Transformer-based DCNNs, . o
Naeem etal. [21] 2024 CICIoMT2024 LSTM, and Meta-learner Binary 98.84%
Tseng et al. [22] 2024 CICIoT2023 Transformer Model Binary 99.40%
Alsharaiah et al. [23] 2025 CICIoMT2024 Transformer-based DL and Binary 99.71%.
Explainable Al
CICIDS2017,
Faruqui et al. [24] 2023 CICIDS2018 and CNN and LSTM Multi-class (12) 97.63%
CICIDS2019
. CICIoT2023 and . o
Gueriani et al. [25] 2024 CICIDS2017 CNN and LSTM Binary 98.42%
CICIDS2017,
Sayegh et al. [26] 2023 NSL-KDD and LSTM Binary 99.75%
UNSW-NB15
Jony et al. [27] 2024 CICIoT2023 LSTM Multi-class (35) 98.75%
Random Forest, XGBoost,
Lipsa et al. [28] 2025 CICIDS2017 and Decision Tree, and Support Multi-class (14) 99%
NSL-KDD
Vector
Abbas et al. [30] 2023 CICIoT2023 Federated DNN Binary 99.00%
) CICIoT2023 and . o
Doménech et al. [31] 2025 CICIoMT2024 ML models Multi-class (6) 99.85%
. CICIoT2023 and . o
Doménech et al. [32] 2025 CICTOMT2024 ML models Multi-class (6) 99.85%
Gated Recurrent Unit (GRU) . o
Saran & al. [33] 2024 NF-TON-IoT and ICU and Attention Mechanism Binary 99.99%
WSN-DS, CICIDS2017 . o
Anwar et al. [34] 2025 and UNSW-NB15 FL-based LSTM Binary 97.80%
Our Proposed Model 2025 CICIoMT2024 Hybrid BILSTM-DNN Multi-Class (19) 98.81%

(HBiLD-IDS)
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3. Methodology

This section presents the methodological framework of our HBiLD-IDS (Hybrid Bidi-
rectional LSTM—Intrusion Detection System) architecture (Figure 1), a novel security model
specifically designed for [oMT environments.

( MODELING AND TRAINING )

i DATA COLLECTION

Load and Combine
CICIoMT2024’s CSV files

Create
trainset and testset

= Input Layer
(DATA PREPROCESSING ) +
==t = Handle Missing Values ((TRAIN_SET SPUITTING | S
v
N -
l l Training Set ] DNN Layers
Features Selection > +
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l k : )
@ J
Numerical Features 4
N e ( MODEL EVALUATION h
o — -
l ,[ Testing Set J——-‘ Best Model Testing
¢ v
OneHotEncoding -
7 Final Result
\ J ‘ /
<\
Performance Metrics
Analysis J
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Figure 1. Proposed HBiLD-IDS model.

3.1. Dataset

In this study, we evaluate the proposed intrusion detection algorithms and models
using the CICIoMT2024 dataset, a specialized benchmark for IoMT security research,
curated and released by Dadkhah et al. [35] at the Canadian Institute for Cybersecurity
(CIC); it combines (1) healthcare-specific attacks (e.g., medical device hijacking), (2) true
multiprotocol traffic (WiFi, MQTT, and Bluetooth interactions), and (3) diverse clinical
environments addressing critical gaps in existing datasets like CICIDS2017 (general network
attacks only) and WUSTL-EHMS (limited to BLE protocols). This dataset provides realistic,
annotated scenarios across mixed medical IoT ecosystems and enables precise detection
model training for healthcare-specific threats.

3.1.1. Dataset Description

The CICIoMT2024 dataset includes network traffic captured from 40 IoMT devices,
including 25 real devices (WiFi and Bluetooth protocol) and 15 simulated devices (MQTT
protocol), representing the majority of devices commonly used in healthcare environments.
Eighteen (18) different attack scenarios were observed, categorized into five main types:
DDOS (distributed denial of service), DOS (denial of service), Recon (Reconnaissance),
MQTT-based attacks, and Spoofing. Benign traffic is also captured in a zero-attack day for
more balancing between malicious and non-malicious activities (given in Table 2). This
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allows for three classifications: binary (02 classes: benign and malicious), category level
(06 classes: benign and 5 categories), and detailed (19 classes: benign and 18 subcategories),
all aligned with the STRIDE threat model, a widely adopted cyber security framework
categorizing threats into six core types: Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege [36]. The collected data contains
8,775,013 instances characterized by 45 attack-aware features (as described in Table 2).

Table 2. Raw data distribution in CICIoMT2024 dataset according STRIDE model.

Binary 6-Classes 19-Classes Count Percentage STRIDE Threats
Category
Benign Benign Benign (Normal Traffic) 230,339 2.62% -
Spoofing ~ ARP Spoofing 17,791 0.20% Spoofing Identity (S)
TCP Flood 462,480 5.27%
DoS UDP Flood 704,503 8.03%
© SYN Flood 540,498 6.16%
ICMP Flood 514,724 5.87%
TCP Amplification 987,063 11.25%
UDP Amplification 1,998,026 22.77% ) )
DDo5 YN Flood 974,359 11.10% Denial of Service (D)
Attack ICMP Flood 1887175  21.51%
Dos-Connect Flood 15,904 0.18%
Dos-Publish Flood 52,881 0.60%
MQTT DDos-Connect Flood 214,952 2.45%
DDos-Publish Flood 36,039 0.41%
Malformed Packets 6877 0.08%
Port Scanning 106,603 1.21%
OS Fingerprinting 20,666 0.24% . .
Recon Ping_Sweep 926 0.01% Information Disclosure (I)
Vulnerability scanning 3207 0.04%

3.1.2. Dataset Collection

Since the original version of the CICIoMT2024 dataset is given as CSV files (51 for
train and 21 for test) of different sizes, we proceeded to combine them into two separate
datasets, a training set with 7,160,831 traffic records and a test set with 1,614,182 traffic
records, to ensure proper data split for model development. A ‘label’ column was automat-
ically generated from each filename by removing a predefined suffix (e.g., “_train.csv”) to
preserve class information. The target column was then separated for supervised learning.

3.2. Proposed Model

HBiLD-IDS uses a synergistic combination of a Bidirectional Long Short-Term Memory
layer with 128 units and a Deep Neural Network model with 128 to 64 ReLU units in a
hierarchical processing pipeline that achieves superior analysis IoMT traffic.

The BiLSTM captures comprehensive bidirectional temporal patterns including subtle
dependencies often overlooked in medical device communications, while the DNN trans-
forms these sequential features into enhanced discriminative representations by parsing
hierarchical features using nonlinear projection.

HBiLD-IDS demonstrates its ability to handle diverse loMT communication protocols
through its validation on the CloMT2024 dataset. This comprehensive dataset includes
network traffic from 25 real Wi-Fi and Bluetooth devices, along with 15 simulated devices
using MQTT, protocols specifically chosen for their prevalence in healthcare. By training
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on this heterogeneous traffic, HBiLD-IDS effectively recognizes intrusions and anomalies
regardless of the underlying protocol. It achieves this by prioritizing high-level behavioral
signatures and traffic-derived features over rigid, protocol-specific rules, ensuring broad
adaptability across various IoMT standards.

This BiLSTM-based approach tackles the absence of standardized security in the loMT
ecosystem by acting as a dynamic behavioral monitor. This method learns the unique “fin-
gerprint” of normal healthcare devices activity, allowing it to detect and flag any deviations
from established patterns. This adaptability makes it particularly effective for real-time
intrusion detection within the heterogeneous and often inconsistent lIoMT environment.

3.3. Data Preprocessing

The preprocessing pipeline for the dataset involved several critical steps to ensure
high-quality input for machine learning models. First, after removing rows with excessive
missing values and performing median imputation for numerical features, the nineteen
target classes were one-hot encoded to eliminate ordinal bias. Second, a feature selection
process sequentially applied the following: (1) a variance threshold to eliminate non-
informative features, (2) correlation-based filtering to remove redundancy, and (3) RFE to
select optimal features. Finally, Min-Max normalization (0-1 scaling) standardized feature
ranges while preserving dataset-specific distributions, ensuring compatibility with diverse
ML architectures. Both the train and test sets were subjected to all transformations in the
preprocessing pipeline.

3.4. Data Splitting

We performed stratified splitting of the preprocessed training data into training
(80%) and validation (20%) sets to ensure both model generalizability and reproducibility.

3.5. Model Architecture

The HBiLD-IDS architecture was designed around three fundamental principles: (1)
temporal integrity preservation, (2) regularization robustness, and (3) training stability,
implemented through the following technical components:

(a) Core Architecture:

e  Temporal Processing: A 128-unit bidirectional LSTM layer (return sequences = True)
maintains temporal resolution, with input features reshaped into 3D tensors
(n_features x 1 x 1) for dimensional compatibility;

e Regularization Framework:

- Immediate 40% variational dropout after BILSTM layer;
- Progressive dropout decay (40%—30%) across subsequent distillation layers;

o  Feature Distillation: Two dense layers (128—64 neurons) with ReLU activation
form the hierarchical feature extraction block;

(b) Optimization Configuration:

e Adam optimizer (n =5 x 10~4 initial learning rate);
e  Batch training (size = 128) for a maximum of 50 epochs;
e  Tri-phase callback system:

1.  EarlyStopping: Patience = 20 epochs; 6 = 0.001 (prevents overfitting);

2. ReduceLROnPlateau: Factor = 0.2 reduction; cooldown = 2 epochs (escapes
local minima);

3.  ModelCheckpoint: Saves optimal weights based on validation perfor-
mance3.6. Experimental Environnement.



Information 2025, 16, 669

8 of 15

3.6. Experimental Environnement

All experiments were conducted on a workstation with an Intel i5-12400F (6-core,
2.5 GHz), 32 GB RAM, and NVIDIA RTX 3060 Ti GPU (8 GB). The Python 3.10.7 imple-
mentation used Pandas for data processing and TensorFlow for model development, with
evaluation metrics (accuracy, precision, recall, and F1-score) calculated via Scikit-learn.

3.7. Evaluation Metrics

The performance and effectiveness of our model are evaluated using standard eval-
uation metrics (accuracy, precision, recall, and F1-score), as well as the confusion matrix
which is often used as evaluation metrics along with the four metrics with are calculated:

o  True positives (TPs): Count of instances correctly predicted as positive.

e  False positives (FPs): Count of instances wrongly predicted as positives.
e  True positives (TNs): Count of instances correctly predicted as negatives.
e  False positives (FNs): Count of instances wrongly predicted as negatives.

Accuracy: measures the proportion of correctly classified instances among all evalua-
tion examples, obtained by dividing correct classifications by total classifications.

TP+ TN

TP+TN+FP+FN @

Accuracy =

Precision: defined as the ratio of true positives to all instances predicted as positive,
obtained by dividing number of true positives by the sum of number of true positives and

number of false positives.
TP

TP+ FP

Recall: measures the model’s ability to correctly identify positive examples among

Precision =

()

all truly positive examples, obtained by dividing number of true positives by the sum of
number of true positives and number of false negatives.

TP

Recall = ———
= TPIEN

)
F1_score: The Fl-score represents the harmonic mean of precision and recall, taking
into account false alarms and missed detections.

(Precsion x Recall)
(Precsion + Recall)

F1_score =2 4)

Confusion matrix: is a supervised learning evaluation tool that tabulates actual classes
typically represented in rows versus predicted classes in columns across through four
metrics: true positives (TPs), false positives (FPs), true negatives (TNs), and false negatives
(FNs), enabling precise analysis of labels classification performance.

4. Results and Discussion

To develop an effective intrusion detection system for IoMT networks, we evaluated
the performance of multiple models, including a Deep Neural Networks (DNNs) model,
Hybrid CNN-DNN model, Hybrid LSTM-DNN model, and Hybrid BILSTM-DNN (the
proposed model).

The comparative results, as depicted in Figure 2, highlight the strengths and limita-
tions of each approach across key metrics: accuracy, precision, recall and Fl-score. The
DNN model demonstrated strong performance in processing spatial data, achieving an
accuracy of 97.54% (precision: 97.86%, recall: 97.54%, and F1-score: 97.30%). Its hierarchi-
cal feature extraction capability makes it well-suited for detecting patterns in structured
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network traffic. However, its inability to effectively analyze sequential or time-dependent

data (a common characteristic of network intrusions) limited its overall effectiveness, par-

ticularly in dynamic IoMT environments.
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Figure 2. Model’s performance metrics comparison.

While the CNN-DNN model can achieve strong performance (accuracy: 98.67%,
precision: 98.87%, recall: 98.59%, and F1-score: 98.45%) by leveraging the CNN component
for spatial feature extraction (e.g., identifying correlations among network attributes at a
single point in time) and the DNN for subsequent classification, it inherently struggles with
processing spatio-temporal features and capturing temporal dependencies. Therefore, the
same limitation observed in plain DNNs regarding their inability to effectively analyze
sequential or time-dependent data largely persists, hindering their overall effectiveness
in dynamic IoMT environments where intrusions often manifest as evolving sequences
of events.

To address this limitation, we integrated LSTM with DNN, leveraging LSTM's strength
in capturing temporal dependencies in serial data. The resulting LSTM-DNN hybrid model
showed significant improvement, achieving an accuracy of 98.76% (precision: 99.07%,
recall: 98.76, and F1-score of 98.55%). This enhancement underscores the importance of
combining spatial and temporal feature extraction for intrusion detection.

Further optimization was achieved by replacing the standard LSTM with a BILSTM
model which processes data in both forward and backward directions, enabling deeper
contextual analysis to provide a comprehensive contextual understanding of network
traffic. This is crucial for detecting sophisticated, multi-stage attacks and ensuring ro-
bustness across various attack scenarios. Following this, the DNN layers are vital for
hierarchical feature extraction, learning abstract representations and complex nonlinear
patterns, leading to powerful classification capabilities and scalability across different loMT
protocols. The proposed HBILD-IDS model, incorporating these advancements, outper-
formed all other models, attaining an accuracy of 98.81% (precision: 99.10%, recall: 98.81%,
and F1-score of 98.59%).
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Our proposed model demonstrates a significant reduction in false positives. As shown
in Figures 3 and 4, HBIiLD-IDS achieves perfect precision (100%) for nine (9) types of
attacks (e.g.: TCP_IP-DDOS, TCP_IP-DOS, and MQTT_DDOS-Connect_Floods) and high
precision between 86% and 99% for six (6) types (e.g.: MQTT-DDoS-Publish_Flood and
Recon-Port_Scan). The remaining three types achieved precision ranging from 29% to
53% (Arp_Spoofing: 29%, Recon_Vul-Scan: 44%, and MQTT_DoS_Publish_Flood: 53%),
performing better than DNN and CNN-DNN (Arp_Spoofing: 26%, Recon_Vul-Scan: 0%,
and MQTT_DoS_Publish_Flood: 53%) for each one. This demonstrates its absolute re-
liability for countering widely represented threats, as well as rare threats, despite their
under-representation in the data. Legitimate traffic was also accurately identified with a
precision of 92%, enhancing its ability to distinguish between legitimate and malicious traf-
fic types, effectively maintaining normal operations and limiting operational disruptions
through threat filtering.
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Figure 3. Per-class performance metrics comparison on the test set.
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Figure 4. Nineteen-class confusion matrix evaluation of the proposed model on test data.

With high precision (99.10%), HBiLD-IDS confirms that identified attack attempts are
mostly real attacks, mitigating false alarms. This robustness against imbalanced classes
confirms the effectiveness of our approach in detecting both massive and rare threats but
equally important attacks.



Information 2025, 16, 669

12 of 15

As shown in Table 3, HBiLD-IDS offers significant improvements over existing ap-
proaches in classifying 19 attacks on the CICIoMT2024 dataset, with outstanding perfor-
mance (accuracy: 98.81%, precision: 99.10%, recall: 98.81%, and F1: 98.59%). It outperforms
CNN-LSTM-RL by 21.08%, LSTM by 0.81%, and Random Forest by 25.51% in accuracy,
while effectively reducing false positives and detecting various threats.

Table 3. Nineteen-class performance comparison of proposed model against previous works using
CICIoMT2024 dataset.

Authors ML/DL Technique Accuracy Precision Recall F1-Score
Shaikh et al. [18] Hybrid (CNN-LSTM-RL) 0.7773 0.7602 0.7773 0.7247
Akar et al. [20] LSTM 0.9800 0.9800 0.9800 0.9800
Dadkhah et al. [35] RandomForest 0.7330 0.6910 0.5770 0.551
HBiLD-IDS . .
(Proposed Model) Hybrid (BiLSTM-DNN) 0.9881 0.9910 0.9881 0.9859

Conversely, Shaikh et al.’s hybrid CNN-LSTM-RL model [18], while adept at com-
bining spatial feature extraction (CNN) with temporal modeling (LSTM), may inherently
not excel at raw feature extraction and classification tasks that benefit from the bidirec-
tional context captured by BILSTM. The inclusion of reinforcement learning (RL) in such a
hybrid model shifts its primary focus. The role of reinforcement learning is to optimize
decision-making policies based on environmental interactions and rewards, rather than
simply enhancing classification effectiveness. This fundamental difference in objectives can
lead to lower classification performance metrics.

While Akar et al.’s LSTM model [20] shows strong performance in intrusion detection,
HBIiLD-IDS achieves superior results primarily due to its Bidirectional LSTM (BiLSTM)
component. This bidirectional approach enables it to analyze temporal sequences by
considering both preceding and succeeding data, a key advantage over unidirectional
LSTMs that only look at past contexts. This comprehensive understanding, integrated with
its hierarchical DNN structure, allows HBiLD-IDS to consistently outperform unidirectional
LSTMs across all evaluation metrics.

Traditional machine learning algorithms, like Random Forest, despite their robustness
in various applications, fundamentally rely on handcrafted features and decision tree
structures. Unlike deep learning models, they cannot automatically learn complex, high-
level features or critical temporal dependencies directly from raw data. This inherent
limitation is starkly evident in the significantly lower performance metrics of Dadkhah
et al.’s model [35] when using Random Forest, clearly demonstrating its inadequacy in
handling the intricate and dynamic challenges of modern network intrusion detection
compared to advanced deep learning approaches such as HBiLD-IDS.

By integrating complementary learning modes, the proposed hybrid approach
achieves superior detection accuracy for both medical device threats and workflow anoma-
lies compared to single-modality methods. The architecture establishes a new benchmark
for scalable Internet of Medical Things (IoMT) security, with future enhancements targeting
stealthy attack detection through improved training techniques.

Our approach demonstrates excellent performance, achieving high accuracy (86-100%)
for 15 attack types and maintaining 92% accuracy on legitimate traffic. However, we have
identified significant validity threats, primarily reduced accuracy (29% and 44%) for ARP
spoofing and vulnerability scans, respectively. This indicates limitations in handling
rare attack classes due to class imbalance and poor representation of minority attack
characteristics. Given the major risks these specific attacks pose, we are actively addressing
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these limitations by expanding testing for rare attacks and improving imbalance mitigation
in our ongoing research.

5. Conclusions

The Internet of Medical Things (IoMT) faces growing cyber security challenges due to
its critical healthcare role and sensitive data, demanding robust intrusion detection systems
(IDSs) tailored to medical environments. Our HBiLD-IDS model redefines the standards
by combining sequential analysis (BiLSTM) and deep learning (DNN), achieving high
performance on the CICIoMT2024 dataset: 98.81% accuracy, 99.10% precision, 98.81% recall,
and 98.59% F1-score, outperforming existing solutions. These results prove its effectiveness
in detecting dynamic attacks while minimizing false positives/negatives, an imperative
to prevent serious medical errors. While ideal for real-world IoMT deployments, the
widespread adoption of HBiLD-IDS will necessitate continuous innovations to effectively
counter evolving cyber threats and further strengthen its resilience, particularly concerning
the detection of rare and novel attacks. For future work, we specifically aim to enhance
HBiLD-IDS to better address resource constraints within the IoMT ecosystem. This will in-
volve leveraging a hybrid approach that integrates edge and fog computing for distributed
processing and low-latency analysis. Furthermore, we intend to incorporate federated
learning to enable privacy-preserving, collaborative model training, which can help in
collectively identifying without compromising data privacy. This expanded framework is
designed to ensure robust, real-time intrusion detection while simultaneously safeguarding
sensitive medical data.
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